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1 Introduction

Stochastic frontier models allow to analyse technical inefficiency in the frame-

work of production functions. Production units (firms, regions, countries,

etc.) are assumed to produce according to a common technology, and reach

the frontier when they produce the maximum possible output for a given

set of inputs. Inefficiencies can be due to structural problems or market im-

perfections and other factors which cause countries to produce below their

maximum attainable output.

Over time, production units can become less inefficient and catch up to

the frontier.1 It is also possible that the frontier shifts, indicating techni-

cal progress. In addition, production units can move along the frontier by

changing input quantities. Finally, there can be some combinations of these

three effects. The stochastic frontier method allows to decompose growth

into changes in input use, changes in technology and changes in efficiency,

thus extending the widely used growth accounting method.

When dealing with productivity, two main problems arise: its definition

and its measurement. Traditionally, empirical research on productivity has

suffered from a number of shortcomings. Most empirical studies have em-

ployed the so called Solow residual (Solow 1956). The use of this measure is

problematic: Abramovitz (1956) refers to the difference between the growth

rates of output and the weighted sum of input growth rates as a “measure

of our ignorance about the causes of economic growth”. There are studies

which associate productivity change measured by the resiudal with technical

change (Solow 1956, Kendrick 1961, 1976, Maddison 1987). Other studies

decompose productivity change into a term due to technical change and a

1For the importance of infrastructure investment for efficiency in the case of regional
production functions in Italy, see Mastromarco and Woitek (2006).
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term due to scale economies (Denison 1962, 1979, 1985). To distinguish the

sources of productivity change, it is desirable to incorporate the possibility

of changes in efficiency. The stochastic frontier method allows this important

step.

Section 2 discusses other productivity measures proposed in the litera-

ture and discusses their advantages and drawbacks. In Section 3, both the

deterministic and stochastic frontier approaches are introduced. Section 4

discusses in detail stochastic frontier analysis for cross-section models. Sec-

tion 5 extends the discussion to panel data models, distinguishing the case

of time invariant inefficiency from the case where inefficiency changes over

time. Section 6 describes Battese and Coelli’s (1995) model.

2 Growth Accounting and the Solow Resid-

ual

In empirical research, technological change has been measured as change in

total factor productivity (TFP) in the analytical framework of a production

function. The usual measure for technological progress is a residual of the

Abramovitz/Solow type where output growth is decomposed into a weighted

sum of input growth rates. The residual representing the change in output

which cannot be explained by input growth is identified as technological

progress.

Consider a two-factor production frontier with Hicks-neutral technical

progress:

Y = ΘF (L,K) (1)
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where Y is real output; Θ stands for an index of Hicks neutral technical

progress; L and K are labour and capital inputs.

Taking logs on both sides of equation (1) and differentiating with respect

to time yields:

Ẏ

Y
=

Θ̇

Θ
+

ΘFLL

Y

L̇

L
+

ΘFKK

Y

K̇

K
(2)

where ΘFLL
Y

= eL and ΘFKK
Y

= eK are elasticities of output with respect to

labour and capital, and e = eL + eK .

The Solow residual ( Θ̇
Θ
) is given as the difference in the growth of output

and the contribution of the inputs weighted by their respective factor shares

in value added:

Θ̇

Θ
=

Ẏ

Y
− ΘFLL

Y

L̇

L
− ΘFKK

Y

K̇

K
(3)

In principle this equation could be used to derive total factor productivity

growth ( Θ̇
Θ
) but the marginal products of labour (ΘFLL

Y
) and capital ( ΘFKK

Y
)

are not observable. This problem can be overcome by solving the firm’s cost

minimisation problem:

min
L,K

C = wL + rK (4)

s.t. Y = ΘF (L,K) (5)

where w is wage rate and r is interest rate.

The Lagrangian is given by:

L(L,K, λ) = wL + rK + λ(Y − θF (L,K)) (6)

4



The first order conditions are:

ΘFL =
w

λ
; ΘFK =

r

λ
(7)

where the multiplier λ can be interpreted as marginal cost. If perfect

competition is assumed, λ can be replaced by the observable market price of

output P. Hence the first order condition can be rewritten as:

ΘFL =
w

P
; ΘFK =

r

P
(4′)

Substituting this equation into equation (2) we obtain:

Ẏ

Y
=

Θ̇

Θ
+

wLL̇

PY L
+

rKK̇

PY K
(8)

Therefore, we can express total factor productivity growth as the differ-

ence between output growth and weighted input growth, with revenue shares

as weights:

Θ̇

Θ
=

Ẏ

Y
− wLL̇

PY L
− rKK̇

PY K
(9)

This measure is, however, subject to criticism. The Solow residual ignores

monopolistic markets, non-constant returns to scale and variable factor util-

isation over the cycle (Saint-Paul 1997). In the case of monopoly profits,

the residual underestimates the elasticity of output with respect to all in-

puts. To overcome this problem, Hall (1990) uses cost based shares in the

derivation of his alternative TFP measure. Basu (1996) provides a measure

of TFP which is net of cyclical factor utilisation. Material inputs do not

have a utilisation dimension, unlike employment and capital. Basu therefore

uses relative changes in the input of raw materials and other measured factor
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inputs to deduce the extent to which factor utilisation changes over the cy-

cle. Another approach is the one proposed by Basu and Kimball (1997) and

Basu and Fernald (2000). They link unobservable factor utilisation (U,E) to

observable inputs (H) and arrive at the decomposition

dy = γ (sKdk + sL(dh + dl)) + γ
(

sK
η

ν
+ sLζ

)

dh + dz, (10)

where ζ is the steady-state elasticity of hourly effort with respect to hours, η

is the rate of change of the elasticity of labor costs with respect to hours, and

ν is the rate of change of the elasticity of labor costs with respect to capital

utilisation.2 This decomposition can be estimated, provided that data is

available.3 The availability issue makes it necessary to apply other, less data

intensive methods.

Empirical studies based on the (uncorrected) Solow residual described

above regard productivity growth and technical progress as synonymous (Jor-

genson 1996, Crafts 2004). However, technical progress is the change in the

best practice frontier, i.e. a shift of the production function. Other produc-

tivity changes, as learning by doing, improved managerial practice, diffusion

of new technological knowledge, and short run adjustment to external shocks

are technical efficiency changes (movements towards or away from the fron-

tier). Productivity growth is the net change in output due to changes in

efficiency and technical change. Therefore, efficiency is a component of pro-

ductivity.4 To fix ideas, consider the example in Figure 1. It compares the

output of two production units, A and B, as a function of labour, L. Given

the same production technology, the higher output in country A than B can

2The assumption is that unobservable labour effort and capital utilization depend on
observable worked hours.

3See Malley et al. (forthcoming) for an application to the US manufacturing sector.
4Nishimizu and Page (1982), Grosskopf (1993).
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occur for four possible reasons. First, this difference can be due to differences

in input levels, as is the case in panel (I). Second, technology acquisition may

differ between production units or regions, with the consequence that for the

same level of inputs different outputs result (panel (II)). Third, it might be

that country B produces less efficiently than country A. In other words,

both production units have the same frontier and the same input level, but

output in B is lower (panel (III)). And fourth, differences could be due to

some combination of the three causes. The Solow residual fails to discrim-

inate between the second and the third possibility: efficiency is part of the

residual.

As pointed out above, corrections to the Solow residual like the one pro-

posed by Basu (1996) require data which are not always available. An ad-

ditional drawback of the growth accounting approach is that the mechanical

decomposition of output growth rates does not provide a direct, model based

explanation of growth differences across production units.5 Cross-country

growth regressions of the Barro-type (Barro 1999) try to overcome this prob-

lem by assuming a linear relationship between several conditioning variables

and growth. However, this approach is not immune against criticism: the

choice of explanatory variables might be arbitrary, and the error term has

no structure.6 Thus, as in the case of the Solow residual, it is not possible

to identify efficiency changes.

Another less data intensive approach is the estimation of a frontier pro-

duction function. The stochastic frontier methodology, pioneered by Aigner

et al. (1977) and Meeusen and van den Broeck (1977), allows the impor-

tant distinction between efficiency gains or losses and technical progress. In

5Of course, after the decomposition, one could regress e.g. the residual on explanatory
variables, which is a problematic approach (Wang and Schmidt 2002).

6See Temple (1999) and the introduction for a more detailed discussion.
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addition, it allows to include explanatory variables in both the production

function and the efficiency term.
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Figure 1: Production Functions
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3 The Production Frontier

The standard definition of a production function is that it gives the maximum

possible output for a given set of inputs, the production function therefore

defines a boundary or a frontier. All the production units on the frontier

will be fully efficient. Efficiency can be of two kinds: technical and alloca-

tive. Technical efficiency is defined either as producing the maximum level

of output given inputs or as using the minimum level of inputs given output.

Allocative efficiency occurs when the marginal rate of substitution between

any of the inputs equals the corresponding input price ratio. If this equality is

not satisfied, it means that the country is not using its inputs in the optimal

proportions. An initial justification for computing efficiency can be found

in that its measure facilitates comparisons across economic units. Secondly,

and perhaps more importantly, when divergence in efficiency is found some

further research needs to be undertaken to understand which factors led to

it. Finally, differences in efficiency show that there is scope for implementing

policies addressed to reduce them and to improve efficiency.

Technical efficiency can be modelled using either the deterministic or

the stochastic production frontier. In the case of the deterministic frontier

model the entire shortfall of observed output from maximum feasible output

is attributed to technical inefficiency, whereas the stochastic frontier model

includes the effect of random shocks to the production frontier. There are two

alternative approaches to estimate frontier models: one is a non-parametric

approach which uses linear programming techniques, the other is a paramet-

ric approach and utilises econometric estimation. The characterising feature

and main advantage of the non-parametric approach, (also called “Data En-

velopment Analysis”, or DEA), is that no explicit functional form needs to be

imposed on the data. However, one problem with this approach is that it is
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extremely sensitive to outlying observations (Aigner and Chu 1968, Timmer

1971). Therefore, measures of production frontiers can produce misleading

information. Moreover, standard DEA produces efficiency “measures” which

are point estimates: there is no scope for statistical inference and therefore

it is not possible to construct standard errors and confidence intervals.

The parametric or statistical approach imposes a specification on the

production function which of course can be overly restrictive. This approach

does, however, have the advantage of allowing for statistical inference. Hence,

we can test the specification as well as different hypotheses on the efficiency

term and on all the other estimated parameters of the production frontier.

The choice of technique employed to obtain estimates of the parameters

describing the structure of the production frontier and technical efficiency

depends, in part, on data availability. The main difference between cross-

sectional and panel-data estimation techniques is that with cross-sectional

data it is only possible to estimate the performance of each producer at a

specific period in time, whereas with panel data, we are able to estimate the

time pattern of performance for each producer.7 One problem with cross

cross sectional data in efficiency measurement is that technical inefficiency

cannot be separated from firm specific effects that are not related to ineffi-

ciency (Battese and Coelli 1995). Panel data avoids this problem.8 Panel

data contains more information than a single cross section, it therefore en-

ables to relax some strong assumptions used in cross-sectional data and to

7It is assumed that producers produce only a single output. In the case of multiple
outputs, these are aggregated it into a single-output index. Kumbhakar and Lovell (2000,
pp. 93-95) discuss the analysis of stochastic distance functions which accommodate for
multiple outputs.

8While implementing inefficiency measurement using panel data, it is important to
distinguish technical inefficiency from firm and time specific effects. These effects are
normally separate from exogenous technical progress. In a panel data context, it is possible
to decompose the error into firm specific effects, time specific effects, the white noise and
technical inefficiency (Kumbhakar 1991).
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obtain estimates of technical efficiency with more desirable statistical prop-

erties.

A production frontier model can be written as:

yi = f(xi; β)TEi (11)

where yi is the output of producer i (i= 1, . . . , N); xi is a vector of M inputs

used by producer i ; f(xi; β) is the production frontier and β is a vector of

technology parameters to be estimated. Let TEi be the technical efficiency

of producer i,

TEi =
yi

f(xi; β)
, (12)

which defines technical efficiency as the ratio of observed output yi to maxi-

mum feasible output f(xi; β). In the case TEi = 1, yi achieves its maximum

feasible output of f(xi; β). If TEi < 1, it measures technical inefficiency

in the sense that observed output is below the maximum feasible output.

The production frontier f(xi; β) is deterministic. That means that the en-

tire shortfall of observed output yi from maximum feasible output f(xi; β) is

attributed to technical inefficiency. Such a specification ignores the producer-

specific random shocks that are not under the control of the producer. To

incorporate the fact that output can be affected by random shocks into the

analysis, we have to specify the stochastic production frontier

yi = f(xi; β) exp (vi) TEi, (11′)

where f(xi; β) exp (vi) is the stochastic frontier, which consists of a deter-

ministic part f(xi; β) common to all producers and a producer-specific part

exp (vi) which captures the effect of the random shocks to each producer. If
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we specify that the production frontier is stochastic, equation (12) becomes

TEi =
yi

f(xi; β) exp (vi)
. (12′)

If TEi = 1, producer i achieves its maximum feasible value of

f(xi; β) exp (vi). If TEi < 1, it measures technical efficiency with random

shocks exp (vi) incorporated. These shocks are allowed to vary across pro-

ducers.

Technical efficiency can be estimated using either the deterministic pro-

duction frontier model given by equations (11) and (12), or the stochastic

frontier model given by equations (11′) and (12′). Since the stochastic fron-

tier model includes the effect of random shocks on the production process,

this model is preferred to the deterministic frontier.

4 Cross-Section Stochastic Frontier Models

4.1 Introduction

The econometric approach to estimate frontier models uses a parametric

representation of technology along with a two-part composed error term.

Under the assumption that f(xi; β) is of Cobb-Douglas type, the stochastic

frontier model in equation (11′) can be written in logs as

yi = α + xiβ + εi i = 1, . . . , N, (11′′)

where εi is an error term with

εi = vi − ui. (13)
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The economic logic behind this specification is that the production process is

subject to two economically distinguishable random disturbances: statistical

noise represented by vi and technical inefficiency represented by ui. There are

some assumptions necessary on the characteristics of these components. The

errors vi are assumed to have a symmetric distribution, in particular, they

are independently and identically distributed as N (0, σ2
v). The component

ui is assumed to be distributed independently of vi and to satisfy ui ≥ 0 (e.g.

it follows a one-sided normal distribution N+ (0, σ2
u). The non-negativity of

the technical inefficiency term reflects the fact that if ui > 0 the country

will not produce at the maximum attainable level. Any deviation below the

frontier is the result of factors partly under the production units’s control,

but the frontier itself can randomly vary across firms, or over time for the

same production unit. This last consideration allows the assertion that the

frontier is stochastic, with a random disturbance vi being positive or negative

depending on favourable or unfavourable external events.

It is important to note that given the non-negativity assumption on the

efficiency term, its distribution is non-normal and therefore the total error

term is asymmetric and non-normal. This implies that the least squares es-

timator is inefficient. Assuming that vi and ui are distributed independently

of xi, estimation of (11′′) by OLS provides consistent estimators of all pa-

rameters but the intercept, since E(εi) = −E(ui) ≤ 0. Moreover, OLS does

not provide an estimate of producer-specific technical efficiency. However,

it can be used to perform a simple test based on the skewness of empirical

distribution of the estimated residuals. Schmidt and Lin (1984) propose the

test statistic

(b1)
1/2 =

m3

m2
3/2

(14)

where m2 and m3 are the second and the third moments of the empirical
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distribution of the residuals. Since vi is symmetrically distributed, m3 is

simply the third moment of the distribution of ui.

The case m3 < 0 implies that OLS residuals are negatively skewed, and

that there is evidence of technical inefficiency. In fact, if ui > 0 then εi =

vi − ui is negatively skewed. The positive skewness in the OLS residuals, i.e.

m3 > 0, suggests that the model is misspecified. Coelli (1995) proposed an

alternative test statistic

(b1)
1/2 =

m3

(6m3
2/N)

1/2
, (15)

where N is equal to the number of observations. Under the null hypothesis

of zero skewness in the OLS residuals, m3 = 0, the third moment of OLS

residuals is asymptotically distributed as a normal random variable with

mean zero and variance
6m3

2

N
. This implies that the test statistic (b1)

1/2 =

m3/(6m
3
2/N)

1/2
(eq. 15) is asymptotically distributed as a standard normal

random variable N (0, 1).

These two tests have the advantage that they can easily be computed

given that they are based on the OLS residuals. They have the disadvantage

that they rely on asymptotic theory and therefore are not suitable for small

samples. Coelli (1995) presents Monte Carlo experiments where these tests

have the correct size and good power.

The asymmetry of the distribution of the error term is a central feature

of the model. The degree of asymmetry can be represented by the following

parameter:

λ =
σu

σv

. (16)

The larger λ is, the more pronounced the asymmetry will be. On the other

hand, if λ is equal to zero, then the symmetric error component dominates the
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one-side error component in the determination of εi. Therefore, the complete

error term is explained by the random disturbance vi, which follows a normal

distribution. εi therefore has a normal distribution. To test the hypothesis

that λ = 0, we can compute a Wald statistic or likelihood ratio test both

based on the maximum likelihood estimator of λ.9 Coelli (1995) tests as

equivalent hypothesis γ = 0 against the alternative γ > 0, where

γ =
σu

σv + σu

. (17)

A value of zero for the parameter γ indicates that the deviations from the

frontier are entirely due to noise, while a value of one would indicate that all

deviations are due to technical inefficiency.10

The Wald statistic is calculated as

W =
⌢

γ
⌢

σ
⌢
γ

, (18)

where
⌢

γ is maximum likelihood estimate of γ and
⌢

σ
⌢
γ

is its estimated stan-

dard error. Under H0 : γ = 0 is true, the test statistic is asymptotically

distributed as a standard normal random variable. However, given that γ

cannot be negative, the test is performed as a one-sided test. The likelihood

test statistic is

LR = −2 [log (L0) − log (L1)] , (19)

where log (L0) is the log-likelihood valued under the null hypothesis and

9Coelli (1995) shows that the likelihood ratio test is asymptotically distributed as a
mixture of Chi squared distributions.

10Coelli (1995) stresses that the parameter does not reflect the contribution of the
inefficiency effect to the total variance, since the variance of inefficiency is not equal to
σ2

u but to [(π − 2)/π]σ2
u. Therefore, the contribution of the inefficiency effect to the total

variance is equal to γ/[γ + (1 − γ)π/(π − 2)].
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log (L1) is the log-likelihood value under the alternative. This test statistic

is asymptotically distributed as chi-square random variable with degrees of

freedom equal to the number of restrictions.11 Coelli (1995) notes that under

the null hypothesis γ = 0, the statistic lies on the limit of the parameter space

since γ cannot be less than zero.12 He therefore concludes that the likelihood

ratio statistic will have an asymptotic distribution equal to a mixture of chi

square distributions
(

1/2

)

χ2
0 +

(

1/2

)

χ2
1. Kodde and Palm (1986) present

critical values for this test statistic. Coelli (1995), performing a Monte Carlo

study, shows that the Wald test has very poor size. With a confidence interval

of 5%, the Wald test rejects the null hypothesis 20% times instead of 5% as

expected (Type I error). The likelihood ratio test instead has the correct size

and superior power with respect to the Wald test and the test based on the

third moment of the OLS residuals. Coelli concludes that this test should be

performed with maximum likelihood estimation.

Conventionally, the efficiency term can take the form of a truncated nor-

mal distribution, of a half-normal distribution, of an exponential distribution,

or of a gamma distribution. The density function in the truncated normal

case is defined by

f(ui) =
exp

[

−1
2
(ui − µ)2/σ2

u

]

(2π)1/2σu [Φ(−µ/σu)]
, ui > 0, (20)

where Φ(.) is the cumulative distribution function (cdf) of the standard nor-

mal random variable. If a half-normal distribution for the inefficiency com-

ponent is assumed, equation (20) can be modified simply by imposing a zero

11In this case, the number of restrictions is equal to one.
12Because this would mean a negative variance of the inefficiency term σ2

u.
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mean, i.e. µ = 0 . Therefore, the density function of the term u becomes

f(ui) = 2
exp

[

−1
2
(ui)

2/σ2
u

]

(2π)1/2σu

, ui > 0. (21)

This can be explained by the fact that the normal distribution function eval-

uated at zero is one half.13

In the exponential case, the distribution function of the inefficiency term

will take the form

f(ui) = ρ−1 exp(−ρ−1 ui), ui > 0, (22)

where ρ is the parameter of the exponential distribution to be estimated. The

inverse of ρ is equal to the mean of the distribution itself, that is E (ui) = 1
ρ

and the variance σ2
u = 1

ρ2 .
14 Finally, in the case where efficiency follows a

gamma distribution, the density function will be equal to

f(ui) =
um

i

Γ (m + 1) σm+1
u

exp

(

− ui

σu

)

, ui > 0. (23)

The gamma distribution is a two-parameter distribution, depending on m

and σu. If m = 0, the gamma density function becomes the density function

of the exponential distribution.

4.2 Problems related to the Estimation of the Model

It has been demonstrated here that to estimate a stochastic frontier model,

several strong assumptions need to be imposed, in particular about the dis-

tribution of statistical noise (normal) and of technical inefficiency (e.g. one-

13When µ = 0, Φ(−µ/σ) = Φ(0) = 1

2
.

14Thus, given that σ2
u = 1

ρ2 and E (ui) = 1

ρ
, the final expression when the efficiency

follows an exponential distribution is: f(ui) = σ−1
u exp(−σ−1

u ui).
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sided normal). In addition, the assumption that inefficiency is independent

of the regressor may be incorrect, because, as argued by Schmidt and Sickles

(1984), “if a firm knows its level of technical inefficiency, this should affect

its input choices”. These problems can be solved by the use of panel data

(Section 5). Early panel data studies hypothesised that the intercept and the

inefficiency component of the error term are time-invariant, so that the coun-

try effect αi = α− ui could be estimated without distributional assumptions

and then be converted into measures of inefficiency. This time-invariance

assumption therefore makes it possible to substitute for many of the strong

assumptions necessary in the case of a single cross-section. Recent panel data

literature has tried to relax the assumption of a time-invariant inefficiency

component (Cornwell and Schmidt 1996).

4.3 Estimation Methods

There are two main methods to estimate the stochastic frontier models: one

is the Modified Ordinary Least Squares (MOLS) methodology, the other

consists of maximising the likelihood function directly. The following two

sections present an overview of each methodology.

4.4 Modified Ordinary Least Squares (MOLS)

For the system in equations (11′′) and (13) all the assumptions of the classical

regression model apply, with the exception of the zero mean of the distur-

bances εi. The OLS estimator will be a best linear unbiased and consistent

estimate of the vector β. Problems arise for the intercept term α: its OLS

estimate is not consistent. To illustrate this, a simple model where there is

only the intercept, i.e. yi = α + εi can be considered. The OLS estimator of
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the parameter α would be the mean of y, ȳ, which has plim ȳ = α + µε 6= α.

The bias of the constant term is given by the mean of the error term µε.

Winsten (1957) proposes corrected ordinary least squares (COLS) to esti-

mate the production frontier. In the first step Ordinary Least Squares (OLS)

is used to obtain consistent and unbiased estimates of the slope parameters

and a consistent but biased estimate of the intercept. In the second step, the

estimated intercept is shifted up by the maximum value of the OLS residu-

als. The COLS intercept is estimated consistently by α + maxi ûi, where ûi

is the OLS residual at observation i. The OLS residuals are corrected in the

opposite direction: −û′

i = ûi − maxi ûi.

Afriat (1972) and Richmond (1974) propose the MOLS procedure.15 The

MOLS technique consists of correcting the intercept with the expected value

of the error term16 (εi) and adopting OLS to get a consistent estimate. In

the case of the half normal distribution, the mean of εi given by

µε = σu

√

2/π, (24)

where σu is the standard deviation of the inefficiency term. The OLS inter-

cept estimator is consistent for α + µε, where σu has been substituted by its

estimate σ̂u:

σ̂2
u =

[

√

π/2

(

π

π − 4

)

m̂3

]
2/3

and
⌢

σ
2

v = m̂2 −
(

1 − 2

π

)

⌢

σ
2

u. (25)

15This procedure is very similar to the two-step COLS procedure.
16Afriat (1972) and Richmond (1974) explicitly assume that the disturbances follow a

one-sided distribution, such as exponential or half normal.
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The parameters m̂3 and m̂2 are the third and second moments of the OLS

residuals.17 To summarise, the estimate of σu is used to convert the OLS

estimate of the constant term into the MOLS estimate. The model to be

estimated is

yi = (α + µε) + βxi + εi. (26)

As in COLS model, the OLS residuals provide consistent estimates of the

technical efficiency of each unit −û′

i = ûi−µε.
18 The estimation by OLS will

lead to consistent but inefficient estimates of all the parameters. A problem

with the MOLS technique is that the estimates can take values which have

no statistical meaning. Suppose the third moment of the OLS residuals is

positive, then the term in brackets in equation (25) becomes negative and

this leads to a negative value of σ̂u. Olson et al. (1980) label this failure as a

Type I Error. A Type II Error occurs when
⌢

σ
2

ε <
[(

π − 2/π

)

⌢

σ
2

u

]

and implies

that
⌢

σ
2

v < 0.

Moreover, the estimated production frontier is parallel to the OLS re-

gression, since only the OLS intercept is corrected.19 This implies that the

structure of the “best practice” production technology is the same as the

structure of the “central tendency” production technology. This is an un-

17The error term is ǫi = vi − ui. In the case vi ∼ N
(

0, σ2
v

)

and ui follows a half normal

distribution, the first, second and third moments of the efficiency term are: E (ui) =
√

2/π,

E
(

u2
i

)

=
[(

(π − 2)/π

)]

σ2
u and E

(

u3
i

)

=

[

−
√

2/π

(

1 − 4/π

)

]

σ3
u. This implies that the

second and the third central moments of εi are: E
(

ε2
i

)

= σ2
v +
[

(π − 2)/π

]

σ2
u and E

(

ε3
i

)

=
[

√

2/π

(

1 − 4/π

)

]

σ3
u. Then the second (m2) and third moments (m3) of the OLS residuals

are used to estimate σ2
u and σ2

v (equation 25).
18MOLS procedure does not ensure that all units are bounded from above by the esti-

mated production frontier. If a unit has a large positive OLS residual then it is possible
that ui −µε > 0; thus technical efficiency score is greater than unit. This result is difficult
to explain and represents a drawback of this method.

19This problem also affects the COLS methodology.
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desirably restrictive property of the MOLS procedure, since the structure of

“best practice” technology ought to differ from the production technology of

the producers down in the middle of the data who are less efficient than the

“best practice” producer.

4.5 Maximum Likelihood Estimation

As demonstrated in the previous section, consistent estimates of all the pa-

rameters of the frontier function can be obtained simply using a modification

of the OLS estimator. However the distribution of the composed error term is

asymmetric (because of the asymmetric distribution of the inefficiency term).

A maximum likelihood estimator that takes into consideration this informa-

tion should therefore give more efficient estimates, at least asymptotically.20

This has been investigated by Greene (1980a,b) who argues that the Gamma

distribution is one of the distributions which provides a maximum likelihood

estimator with all of the usual desirable properties and which is characterised

by a high degree of flexibility. This distribution should therefore be used to

model the inefficiency error term. However, it has been noticed that the

flexibility of the Gamma distribution can make the shapes of statistical noise

and inefficiency hardly distinguishable.21 The log-likelihood function for the

20Koop et al. (1999, 2000a,b), and Koop (2001) adopt a Bayesian approach to estimate
stochastic production frontiers. While there are certainly advantages of the Bayesian esti-
mation method, the choice of Maximum Likelihood estimation in large sample is justified.
Kim and Schmidt (2000) examine a large number of classical and Bayesian procedures
to estimate the level of technical efficiency using different panel data sets. They find
that Maximum Likelihood estimation based on the exponential distribution gives similar
results to the Bayesian model in which the prior distribution for efficiency is exponen-
tial and there is an uninformative prior for the exponential parameter. The problem in
the classical framework is that asymptotically valid inference may be not valid in small
samples.

21See van den Broeck et al. (1994).
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model defined by equations (11′′) and (13) is derived by Aigner et al. (1977).22

When considering the half normal distribution ui ∼ N+(0, σu), the max-

imum log-likelihood function takes the form

ln L
(

y
∣

∣α,β, λ, σ2
)

=N ln

√
2√
π

+ N ln σ−1 +
N
∑

i=1

ln
[

1 − Φ(εiλσ−1)
]

−

1

2σ2

N
∑

i=1

ε2
i ,

(27)

where λ is the ratio defined in equation (16), σ = σ2
u + σ2

v and Φ(.) is the

standard normal cumulative distribution function.

If we assume an a truncated normal distribution ui ∼ N+(µ, σu), the

log-likelihood function is

ln L
(

y
∣

∣α,β, λ, σ2
)

= − N

2
ln
(π

2

)

− N ln σ − NΦ

(−µ

λσ

)

+

N
∑

j=1

ln Φ

(−µλ−1 − εjλ

σ

)

− 1

2σ2

N
∑

j=1

ε2
j .

(28)

In the case where the efficiency follows an exponential distribution ui ∼
Ex(θ), θ = σ−1

u , the log-likelihood function is

ln L
(

y
∣

∣α,β, λ, σ2
)

= − N

(

ln σu +
σ2

v

2σ2
u

)

+
N
∑

j=1

ln Φ

(−εj

σv

− λ−1

)

+

N
∑

j=1

εj

σu

.

(29)

22The log-likelihood function is expressed in terms of the two parameters σ2 = σ2
u + σ2

v

and λ = σu

σv

. Given that the parameter λ can assume any non-negative value, Battese and

Corra (1977) suggest to use the parameter γ =
σ2

u

σ2
v
+σ2

u

that can vary between zero and one.

Coelli (1995) observes that λ =
√

γ/(1 − γ).
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4.6 Measurement of Efficiency

Battese and Coelli (1988) define technical efficiency of a firm as the ratio of

its mean production (in original units), given the level of inefficiency, to the

corresponding mean production if the inefficiency level were zero. Using this

definition, technical efficiency for country i, TEi is

TEi =
E(y∗

i |ui,xi)

E(y∗

i |ui = 0,xi)
, (30)

where y∗

i is the value of production (in original units) for the ith country.

This measure will necessarily be bound between zero and one, because the

level of production under inefficiency (the economy is producing below the

production frontier) will always be smaller than the level of efficient pro-

duction. If it is assumed that the production function (11′′) is expressed in

logarithmic form, then the inefficiency term will be

TEi = exp(−ui). (31)

When the data are in logarithms it is notable that the measure of efficiency is

equivalent to the ratio of the level of production (when inefficiency occurs),

exp(yi) = exp(a + βxi + vi − ui), to the corresponding value of produc-

tion without inefficiency, exp(yi) = exp(a + βxi + vi). Because of the way

technical efficiency is measured, the latter measure (31) compared to (30) is

independent of the level of the inputs. The problem that now arises is how to

compute this measure of efficiency. A method has been proposed by Jondrow

et al. (1982), and it is based on the distribution of the inefficiency term con-

ditional to the composite error term, ui|εi. This distribution contains all the

information that εi yields about ui, therefore we can use the expected value

of the distribution as a point estimate of ui. Jondrow et al. (1982) demon-
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strate under the assumptions that (i) vi are iid N(0, σ2
v), (ii) xi and vj are

independent, (iii) ui are independent of xi and vi, and (iv) ui follow a one-

sided normal distribution (e.g. truncated or half-normal), the distribution of

ui|εi is a normal random variable N(µ∗

i , σ
2
∗
) where µ∗

i = σ2
uεi(σ

2
u + σ2

v)
−1 and

σ2
∗

= σ2
uσ

2
v(σ

2
u + σ2

v)
−1. A point estimate for TEi is therefore given by

TEi = E [exp(−ui) |εi ] =
[1 − Φ(σ∗ − µ∗

i /σ∗)]

[1 − Φ(−µ∗

i /σ∗)]
exp

[

−µ∗

i +
1

2
σ2
∗

]

, (32)

where Φ(.) is the standard normal cumulative density function. In order to

implement this procedure estimates of µ∗

i and σ2
∗

are required, and therefore

estimates of the variances of the inefficiency and random components and of

the residuals ε̂i = yi − α̂ − xiβ̂. Equation (32) holds when the distribution

of the inefficiency component is a truncated distribution; whereas, when it

follows a half-normal distribution (for which µ∗

i = 0), the point estimate of

technical efficiency will take the simpler form

TEi = E [exp(−ui) |εi ] = 2 [1 − Φ(σ∗)] exp

[

1

2
σ2
∗

]

, (33)

where the usual notation holds.

A Monte Carlo study conducted by Kumbhakar and Löthgren (1998)

shows negative bias in the estimated inefficiencies and confidence intervals

to be significantly below the corresponding theoretical confidence levels.23

The evidence is that this bias decreases as the sample size increases. More-

over, they find that the point estimator outperforms the interval estimators

of technical inefficiency. Thus, the uncertainty associated with unknown pa-

23Kumbhakar and Löthgren (1998) assume in their Monte Carlo study that the true
values of the underlying parameters are unknown and must be replaced by their ML
estimates. They found that the result is true for all value of inefficiency and for sample
sizes less than 200.
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rameters is reduced when the number of observations increases.24 This result

supports the empirical estimations in studies where the sample size is fairly

large. There are many empirical studies that show the sensitivity of the

estimated efficiencies to the distribution assumption on the one-sided error

component. However, Greene (1990) finds that the ranking of producers by

their individual efficiency scores and the composition of the top and bottom

score deciles is not sensitive to distribution assigned to the efficiency terms.

Since the assumption that efficiency terms follow an half normal distribution

is both plausible and tractable, it is typically employed in empirical work.25

5 Panel Data Stochastic Frontier Models

5.1 Introduction

In the previous sections some of the problems related to a cross-sectional

analysis have been pointed out, namely the assumption that technical ineffi-

ciency is independent of the inputs and the assumptions on the distributional

forms of statistical noise and technical inefficiency. Both these problems can

be solved by the use of panel data. In particular, panel data allows relaxation

of the assumption of independence and avoidance of distribution assumptions

or testing them when they are imposed. Furthermore, with panel data it is

possible to construct estimates of the efficiency levels of each country that are

consistent as the number of observations per country increases. This means

that inefficiency can be estimated more precisely. The general model which

24The Monte Carlo study is performed for sample size N=25, 50, 100, 200, 400 and 800.
25On this argument see Kumbhakar and Lovell (2000) pp.74-90.
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will be analysed is of the form

yit = αi + βxit + vit − uit i = 1, . . . , N ; t = 1, . . . , T. (34)

Before proceeding with the estimation of the model a distinction concerning

the time dimension of the inefficiency term has to be made. In the first

case the term defining inefficiency u will be kept constant over time for each

country, whereas in the second case it will be allowed to change over time.

5.2 Time-Invariant Inefficiency

In this section a model with time-invariant inefficiency will be presented.

Equation (34) can be rewritten as follows:

yit = α + βxit + vit − ui i = 1, . . . , N ; t = 1, . . . , T. (35)

By defining αi = α − ui we have the standard panel data model

yit = αi + βxit + vit (36)

It is assumed that the v are i.i.d. (0, σ2
v) and uncorrelated with the inputs

x. This last assumption is needed for the consistency of the within and

generalised estimators of the parameter vector β, which are derived from the

OLS estimation of equation (36) under a fixed effect model and a random

effect model respectively.

5.3 Fixed Effects Model

The fixed effect model consists of treating the inefficiency levels ui (and

therefore the intercepts αi) as fixed, as simple parameters to be estimated.
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It should be noted that in this specific case, no assumptions are made on

the distribution of the inefficiency term or on the correlation between the

inefficiency term with the regressors and the statistical noise vi. By applying

ordinary least squares estimation to the model (36) combined for all T ob-

servations for each country, the within estimator is derived. It can be shown

to be consistent as either N or T go to infinity. Once the within estimator

is available, an estimate of the intercept terms αi is possible, and therefore

the country-specific technical inefficiencies can be estimated as:

ûi = α̂∗ − α̂i where α̂∗ = max
i

α̂i. (37)

Specification (37) means that the production frontier is normalised in terms

of the best country in the sample. A necessary condition for α̂i to be con-

sistent is that the time period T is very large, whereas to have an accurate

normalisation and a consistent separation of α from the one-sided inefficiency

terms ui a large number of production units N is required. This means that if

N is small it is only possible to compare efficiencies across production units,

but not to an absolute standard (100%). In their empirical analysis on three

different sets of panel data, Horrace and Schmidt (1996) find wide confidence

intervals for the efficiency estimates based on the fixed-effects model. The es-

timation error and the uncertainty in the identification of the most efficient

observation are among the explanations adopted to justify this result. A

problem related to the within estimation is that if important time-invariant

regressors are included in the frontier model, these will show up as ineffi-

ciency in equation (37) (Cornwell and Schmidt 1996). In other words, the

fixed effects (ui) capture both variation across producers in time-invariant

technical efficiency and all phenomena that vary across producers but are

time invariant for each producer. Unfortunately, this occurs whether or not
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the other effects are included as regressors in the model.26 This problem can

be solved by estimating model (34) in a random effect context.

5.4 Random Effects Model

In the random effects model the inefficiency terms ui are treated as one-

sided i.i.d. random variables, uncorrelated with the regressors xit and the

statistical noise vit for all t. So far no distributional assumptions for the

effects are made. Before proceeding to the estimation, the model (35) is

rewritten in a slightly different way, defining α∗ = α − µ, where µ = E(ui):

yit = α∗ + βxit + vit − u∗

i where u∗

i = ui − µ (38)

The estimator for the random effects model is the Generalised Least

Square (GLS) estimator
(

α̂∗ β̂
′

)

′

GLS
, which is consistent as N approaches

infinity. The covariance matrix appearing in the estimator depends on the

variances of the two components of the error term, that is σ2
v and σ2

u. In

the unrealistic case that these two variances are known, the GLS estimator

is consistent as N goes to infinity. In the more realistic case that they are

unknown, the feasible GLS (FGLS) estimator is still consistent as N → ∞,

if it is based on consistent estimates of σ2
v and σ2

u. The advantages offered

by the FGLS estimator are that it allows the inclusion of time-invariant vari-

ables and gives more efficient estimates than the within estimator of the fixed

effect. Nevertheless, the efficiency advantage depends on the orthogonality

of the regressors and the inefficiency term, a condition which is often re-

jected by the data; in addition the gain in terms of efficiency vanishes as

T approaches infinity. For this reason, Schmidt and Sickles (1984) point

26On this argument see Kumbhakar and Lovell (2000) pp.97-100.
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out that the random effects model is more suitable for short panels in which

correlation is empirically rejected. Hausman and Taylor (1981) developed a

test, based on Hausman (1978), for the hypothesis that the error terms are

uncorrelated with the regressors. If the null hypothesis of non-correlation is

accepted, a random-effects model is chosen, otherwise a fixed-effects model is

appropriate. The Hausman test is a test of the orthogonality assumption that

characterises the random effects estimator, which is defined as the weighted

average of the between and the within estimator.27 The test statistic is

H = (β̂RE − β̂FE)
(

Σ̂β̂FE

− Σ̂β̂RE

)

−1

(β̂RE − β̂FE)′, (39)

where β̂RE and β̂FE are the estimated parameter vectors from the random

and the fixed effect models, and ΣRE and ΣFE the respective covariance

matrices. Under the null hypothesis that the random effects estimator is ap-

propriate, the test-statistic is distributed asymptotically as a χ2 with degrees

of freedom equal to the number of the regressors. Henceforth, large values

of the H test-statistic have to be interpreted as supporting the fixed effects

model. Hausman and Taylor (1981) developed a similar test of the hypothesis

that the inefficiency terms are not correlated with the regressors. Technical

inefficiency is estimated by taking the average values of FGLS residuals:

ε̂i =
1

T

∑

t

(yit − α̂∗ − β̂xit) where α∗ = α − µ (40)

and

ûi = ε̂∗i − ε̂i where ε̂∗i = max
i

ε̂i. (41)

The inefficicency estimates are consistent if both N and T are large

27See Hsiao (1986).
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enough, as in the fixed effect case.

5.5 Maximum Likelihood Estimation

The main advantage in using panel data is that it allows relaxation of the

strong assumptions required in the estimation of a cross-section, namely as-

sumptions on the independence of the components of the error term and

the regressors, and distributional assumptions on the inefficiency and sta-

tistical noise. Clearly, it is still possible to make these assumptions and

therefore a maximum likelihood estimator of the parameters of the model

can be obtained. The advantage of panel data in this context is that, as

noted by Cornwell and Schmidt (1996), “repeated observation of the same

firm makes it possible to estimate its level of efficiency more precisely.” The

Battese-Coelli estimator presented in equations (30) to (32) can therefore be

generalised to the case of panel data under the same assumptions presented

for the cross-section case. It is necessary to slightly modify two of the vari-

ables involved, namely µ∗

i and σ2
∗
. They are the mean and the variance of

the normally distributed inefficiency term conditional on the composed error

term, ui|ε, which appears in (32). It can now be observed that the mean and

the variance of the conditional distribution are given respectively by

µ∗

i = σ2
uε̄i(σ

2
u + σ2

v/T )−1

σ2
∗

= σ2
uσ

2
v(σ

2
u + Tσ2

v)
−1,

(42)

where ε̄i = (1/T )
∑

i

εit.

One of the advantages of using the Battese-Coelli method is that it allows

for unbalanced panels, i.e. different numbers of observations per country:

with Ti observations for country i, T has to be replaced by Ti in system (42).
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Note that the variance will depend on i. Another advantage is that the inter-

cept can be estimated directly, without the maximisation used in equation

(37). Therefore, the best country in the sample is no longer normalised to

be 100 percent efficient.

5.6 Time-Varying Inefficiency

If the assumption of a time invariant inefficiency term is relaxed, the model

to be examined is the following:

yit = αit + βxit + vit, (43)

where αit = αt − uit and uit ≥ 0. Given that it is possible to estimate αit,

the following estimates of the inefficiency term can be obtained:

ûit = α̂t − α̂it where α̂t = max
i

(α̂it). (44)

The problem arising here is that some restrictions are needed to estimate the

intercepts αit, and the aim is to find weak enough restrictions which allow for

some degree of flexibility. Cornwell et al. (1990) introduced a model where

the intercepts depend on a vector of observables wt in the following way:

αit = δiwt =
(

δi1 δi2 δi3

)











1

t

t2











, (45)

and where the effects δi are fixed. As Cornwell and Schmidt (1996) point

out, this specification can also “be interpreted as a model of productivity

growth, with rates that differ for each firm”. Country-specific productivity
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growth rates can be constructed as the time derivatives of equation (45). In

this framework , the general model to be estimated becomes

yit = βxit + δiwit + vit. (46)

The estimation procedure starts by finding the within estimator β̂w, then

continues by applying OLS to a regression of the residuals (yit − β̂wxit)

to find estimates of the elements of δi and then computing α̂it as δ̂iwit

(this last estimate will be consistent for T → ∞). Finally, estimates of

inefficiency as in (44) will be obtained. Cornwell et al. (1990) consider the

fixed-effect and the random-effects approach. Since time-invariant regressors

cannot be included in the fixed-effects model, they develop a GLS random-

effects estimator for time-varying technical efficiency model. However, the

GLS estimator is inconsistent when the technical inefficiencies are correlated

with the regressors, therefore the authors compute an efficient instrumental

variables (EIV) estimator that is consistent in the case of correlation of the

efficiency terms with the regressors, and that also allows for the inclusion of

time-invariant regressors. Lee and Schmidt (1993) specify the term uit as

uit =

(

T
∑

t=1

βtdt

)

ui, (47)

where dt is a time dummy variable and one of the coefficients is set equal to

one. This formulation of technical change, differently from that of Cornwell

et al. (1990), does not restrict the temporal pattern of the uit apart for the βt

to be the same for all producers. This time-varying technical efficiency can be

estimated with both fixed- and random-effects models, where the coefficients

βt are treated as the coefficients of ui. Since this model requires estimation
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of T-1 additional parameters, it is appropriate for short panels.28 Once βt

and ui are estimated, the following expression can be obtained:

uit = max
i

(

β̂tûi

)

−
(

β̂tûi

)

, (48)

from which the technical efficiency can be calculated as

TEit = exp (−ûit) . (49)

If the inefficiency terms are independently distributed, maximum likelihood

techniques can be used to estimate the time varying technical efficiency

model. The technical efficiency adding time dummies can be specified as

uit = βtui. (50)

Kumbhakar (1990) proposed the following parametric function of time for

uit:

uit = ui

(

1 + exp
(

δ1t + δ2t
2
))

−1
. (51)

Battese and Coelli (1992) suggested an alternative specification:

uit = ui (exp (−δ(t − T ))) . (52)

Both of these models are estimated using the maximum likelihood proce-

dure discussed in Section 5.5. Kumbhakar’s 1990 model contains two pa-

rameters to be estimated: δ1 and δ2. The sign and the magnitude of

these two parameters determine the characteristics of the function β(t) =

(1 + exp (δ1t + δ2t
2))

−1
that can be increasing or decreasing, concave or con-

28Ahn et al. (1994) developed a generalized method of moments approach to the esti-
mation of Lee and Schmidt model specified by the equations (43 and 47).

34



vex.29 The function β(t) varies between zero and one. The test of the null

hypothesis of time-invariant technical efficiency can be performed by setting

H0 : δ1 = δ2 = 0. In this case, the function β(t) has a constant value of

1/2. Battese and Coelli (1992) require only one parameter δ to be estimated.

The function β(t) = (exp (−δ(t − T ))) can take any positive value. Given

that the value of the second derivative is always positive,30 and if δ > 0, the

function β(t) decreases at an increasing rate. If δ < 0, it increases at an

increasing rate. The hypothesis of time-invariant technical efficiency can be

tested by setting the null hypothesis H0 : δ = 0.

Kumbhakar and Hjalmarsson (1993) model the inefficiency term as

uit = ai + ξit, (53)

where ai is a producer-specific component which captures producer hetero-

geneity also due to omitted time-invariant variables, and ξit is a producer

time-specific component which has a half-normal distribution. The estima-

tion of this model is in two steps. In the first step, either a fixed-effects

model or a random-effects model is used to estimate all the parameters of

the model yit = β0 + βxit − uit + vit, except those in equation (53). In the

second step, distribution assumptions are imposed on ξit and vit. The fixed

effects (βo + ai) and the parameters ξit and vit are estimated by maximum

likelihood, conditioned on the first step parameter estimates.

29The fist and the second derivatives of the function defined by equation (51) depend
on the two parameters δ1 and δ2.

30The first and second derivatives of the function defined by equation (52) are respec-
tively equal to: ∂β(t)/∂t = exp {−δ(t − T )} (−δ); ∂2β(t)

/

∂t2 = exp {−δ(t − T )} δ2.
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6 A Model for Stochastic Technical Ineffi-

ciency Effects for Panel Data: Battese and

Coelli 1995

The panel data framework allows to correct the bias of omitted unobservable

variables. These variables are characteristics peculiar to each production

unit. If these unobservable omitted variables are correlated with included

variables, the estimated coefficients are biased.

The use of panel data techniques allows to solve many limitations of the

cross-country method. Durlauf and Johnson (1995) postulate that cross-

country differences are not explained entirely by differences in rates of phys-

ical and human capital accumulation and population growth. Initial condi-

tions determine aggregate production opportunities that differ considerably

across production units. Islam (1995) observes that the cross-country regres-

sion approach includes several explanatory variables to account for the differ-

ences in preferences and technology, and therefore in steady states. However,

these differences are not measurable and observable. A panel data approach

can overcome these problems by controlling for individual effects. McDonald

and Roberts (1999) state that panel data method allows to analyse cross-

section and time series variation in the data and to test the validity of the

assumption regarding common technology implied by the cross section stud-

ies.

The inefficiency models exposed so far have not explicitly formulated a

model for technical inefficiency effects in terms of appropriate explanatory

variables. Battese and Coelli (1995) propose a model for stochastic technical

inefficiency effects for panel data which includes explanatory variables. The

panel framework permits to exploit the time and sectional dimensions of the
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data. The stochastic nature of the inefficiency terms, allows the estimation of

both technical change - captured by time dummies - in the stochastic frontier

and time-varying technical inefficiency.

Assume the following common production frontier for the production

units under analysis:

Yit = f(Xit)τitξit i = 1, ......N ; t = 1, ....T (54)

where Yit is real output for country i at time t and Xit are production inputs

and other factors associated with country i at time t. τit is the efficiency

measure, with 0 < τit < 1,31 and ξit captures the stochastic nature of the

frontier. Writing a production function of the Cobb-Douglas type in log-

linear form, we obtain

yit = x′

itβ + vit − uit (55)

where uit = −lnτit is a non-negative random variable. The composite error

is vit = lnξit, where vit is normally distributed with mean 0 and variance σ2
v .

In matrix form, we obtain the basic panel data stochastic frontier model:

yt = INα + xtβ + vt − ut t = 1, . . . , T, (56)

31When τit = 1 there is full efficiency, in this case the country i produces on the efficiency
frontier.
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with

yt =

















y1,t

y2,t

...

vN,t

















;xt =

















x1,1,t x1,2,t . . . x1,k,t

x2,1,t x2,2,t . . . x2,k,t

...
...

...

xN,1,t xN,2,t . . . xN,k,t

















;

vt =

















v1,t

v2,t

...

vN,t

















;ut =

















u1,t

u2,t

...

uN,t

















.

In logarithmic specification, technical efficiency of country i is defined as

τit = e−uit (57)

Efficiency is ranked as uN,t ≤ . . . ≤ u2,t ≤ u1,t : Country N produces with

maximum efficiency in the sample.

Often studies estimate the stochastic frontier and calculate the efficiency

term, and, as a second step, they regress predicted efficiency on specific

variables to study the factors which determine efficiency. But such a two-

stage procedure is logically flawed.32 It requires a first-stage assumption that

the inefficiencies are independent and identically distributed. Kumbhakar

et al. (1991) and Reifschneider and Stevenson (1991) address this issue by

proposing a single-stage Maximum Likelihood procedure. Battese and Coelli

(1995) propose an extended version of the model of Kumbhakar et al. (1991)

to allow the use of panel data.33 Battese and Coelli (1995) specify inefficiency

32On this argument, see Wang and Schmidt (2002).
33See also Koop et al. (2000b).
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as

uit = δzit + ωit, (58)

where uit are technical inefficiency effects in the stochastic frontier model that

are assumed to be independently but not identically distributed, zit is vector

of variables which influence efficiencies, and δ is the vector of coefficients

to be estimated. ωit is a random variable distributed as a truncated nomal

distribution with zero mean and variance σ2
u. The requirement that uit ≥ 0

is ensured by truncating ωit from below such that ωit ≥ −δzit. Battese and

Coelli (1995) underline that the assumptions on the error component ωit are

consistent with the assumption of the inefficiency terms being distributed as

truncated normal distribution N+(δzit, σ
2
u).

Maximum likelihood estimation is used to take into consideration the

asymmetric distribution of the inefficiency term. Greene (1980a, 1990) argues

that the only distribution which provides a maximum likelihood estimator

with all desirable properties is the Gamma distribution. However, following

van den Broeck et al. (1994), the truncated distribution function is preferred,

which better distinguishes between statistical noise and inefficiency terms.

Technical efficiency of country i at time t is

TEit = exp (−uit) = exp (−δzit − ωit) (59)

Jondrow et al. (1982) suggest a measure of efficiency based on the distri-

bution of inefficiency conditional to the composite error term, uit | εit (where

εit = vit − uit). The distribution contains all the information that εit yields

about uit. The expected value of the distribution can therefore be used as

a point estimate of uit. When the distribution of the inefficiency component

is a truncated distribution, a point estimate for technical efficiency TEit is
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given by34

E (TEit) = E [exp(−uit) |εit ] =

=
[Φ(−σ∗ + µ∗

it/σ∗)]

[Φ(µ∗

it/σ∗)]
exp

[

−µ∗

it +
1

2
σ2
∗

] (60)

µ∗

it = (σ2
vδzit − σ2

uεit) (σ2
u + σ2

v)
−1 and σ2

∗
= σ2

uσ
2
v(σ

2
u + σ2

v)
−1.35 Φ(.) is the

standard normal cumulative density function. Implementing this procedure

requires estimates of µ∗

it and σ2
∗
. In other words, we need estimates of the

variances of the inefficiency and random components and of the residuals

ε̂it = yit − α̂ − xitβ̂.

By replacing the unknown parameters in equation (60) with the maximum

likelihood estimates an operational predictor for the technical efficiency of the

country i in the time period t is obtained. As opposed to the models in the

previous section, these technical efficiency measures include the influence of

explanatory factors. The inefficiency model in equation (58) include a shift

parameter δ0 which is constant across production units. The model treats

multiple observations of the same unit as being obtained from independent

samples. Therefore the model is a pooled estimator.36

To better exploit the data’s panel nature, Kumbhakar and Hjalmarsson

(1995) and Wang (2003) suggest to incorporate individual specific effects in

the inefficiency model (equation 58). This extension would permit to obtain

a within estimator. The truncated distribution of the inefficiency does not

allow to take first differences or subtract means from the data to eliminate

34See Kumbhakar and Lovell (2000, p.271) and Battese and Coelli (1995). Equation
(60) is similar to the cross-section version of equation (32).

35The following assumptions must hold : (i) the vit are iid N(0, σ2
v), (ii) xit and vit are

independent, (iii) uit is independent of x and v, and (iv) uit follows a one-sided normal
distribution (e.g. truncated or half-normal).

36Battese and Coelli (1995) underline that the inclusion of the intercept parameter δ0

is essential to have parameter estimates associated with explanatory variables z unbiased.
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these specific effects, given that differenced truncated normal distributions do

not result in a known distribution (Wang 2003). Kumbhakar (1991) suggests

to include dummies to take into account specific characteristics.
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